Glutamate and GABA as rapid effectors of hypothalamic “peptidergic” neurons
نویسندگان
چکیده
Vital hypothalamic neurons regulating hunger, wakefulness, reward-seeking, and body weight are often defined by unique expression of hypothalamus-specific neuropeptides. Gene-ablation studies show that some of these peptides, notably orexin/hypocretin (hcrt/orx), are themselves critical for stable states of consciousness and metabolic health. However, neuron-ablation studies often reveal more severe phenotypes, suggesting key roles for co-expressed transmitters. Indeed, most hypothalamic neurons, including hcrt/orx cells, contain fast transmitters glutamate and GABA, as well as several neuropeptides. What are the roles and relations between different transmitters expressed by the same neuron? Here, we consider signaling codes for releasing different transmitters in relation to transmitter and receptor diversity in behaviorally defined, widely projecting "peptidergic" neurons, such as hcrt/orx cells. We then discuss latest optogenetic studies of endogenous transmitter release from defined sets of axons in situ, which suggest that recently characterized vital peptidergic neurons [e.g., hcrt/orx, proopiomelanocortin (POMC), and agouti-related peptide (AgRP) cells], as well as classical modulatory neurons (e.g., dopamine and acetylcholine cells), all use fast transmitters to control their postsynaptic targets. These optogenetic insights are complemented by recent observations of behavioral deficiencies caused by genetic ablation of fast transmission from specific neuropeptidergic and aminergic neurons. Powerful and fast (millisecond-scale) GABAergic and glutamatergic signaling from neurons previously considered to be primarily "modulatory" raises new questions about the roles of slower co-transmitters they co-express.
منابع مشابه
P146: Gamma Aminobutyric Acid (GABA) and its Alterations in Stress
Gamma aminobutyrate (GABA) is a non-protein amino acid that is thought to play an important role in the modulation of the central response to stress. Mechanisms by which GABA may facilitate these responses to stress are metabolic and/or mechanical disruptions. Environmental stresses increase GABA accumulation through cytosolic acidification, induce an acidic pH-dependent activation of glutamate...
متن کاملP139: Effect of Paeonia Lactiflora Root Extract on Epilepsy
Epilepsy is a complex neurological disorder that affects around 1%of the world’s population.it affects the neural cells of the CA1 and CA3 regions of the brain's hippocampus that causes behavioral disorders. The use of medicinal herbs for the treatment of epilepsy has long been common, but these effectors have been less successful. According to glutamate theory, the cause of epilepsy is t...
متن کاملRapid glucocorticoid-mediated endocannabinoid release and opposing regulation of glutamate and gamma-aminobutyric acid inputs to hypothalamic magnocellular neurons.
Glucocorticoids secreted in response to stress activation of the hypothalamic-pituitary-adrenal axis feed back onto the brain to rapidly suppress neuroendocrine activation, including oxytocin and vasopressin secretion. Here we show using whole-cell patch clamp recordings that glucocorticoids elicit a rapid, opposing action on synaptic glutamate and gamma-aminobutyric acid (GABA) release onto ma...
متن کاملRapid Glucocorticoid-Mediated Endocannabinoid Release and Opposing Regulation of Glutamate and -Aminobutyric Acid Inputs to Hypothalamic Magnocellular Neurons
Glucocorticoids secreted in response to stress activation of the hypothalamic-pituitary-adrenal axis feed back onto the brain to rapidly suppress neuroendocrine activation, including oxytocin and vasopressin secretion. Here we show using whole-cell patch clamp recordings that glucocorticoids elicit a rapid, opposing action on synaptic glutamate and -aminobutyric acid (GABA) release onto magnoce...
متن کاملGABA-dependent firing of glutamate-evoked action potentials at AMPA/kainate receptors in developing hypothalamic neurons.
Although it plays a major inhibitory role in the adult mammalian CNS, gamma-aminobutyric acid (GABA) may have an excitatory function in developing neurons. The present study focuses on the dependence of glutamate on GABA to generate action potentials in developing hypothalamic neurons. Under conditions where glutamate by itself could not evoke an action potential, GABA facilitated glutamate-med...
متن کامل